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Answer ALL questions. Write your answers in the spaces provided.
f(x) =3x* + 2ax* — 4x + 5a

Given that (x + 3) is a factor of f(x), find the value of the constant a.

@)
when §(R)=O bwn (A-kR) s a focke & Pin)
J(-2)=0 (x--3)

§(-3)- 3(-3)% 20.(-3)-4(-3): Sa- 0 ()

3(-27) + 2a(94)+12 +Sa 5O
-1 + |Ra +12 +Sa =

S A A S @
-69 v+ 2% = O S =3

+ 64 +6Q

23a = 64 @ Qs 6%3: 3

>28 =283
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Figure 1 shows a plot of part of the curve with equation y = cosx where x is measured in radians.
Diagram 1, on the opposite page, is a copy of Figure 1.
=734}
(a) Use Diagram 1 to show why the equation CDS% / 2
CoSX — 2x———0 j 5 x
j s o',

(‘J"- W32

Figure 1

has only one real root, giving a reason for your answer.

2
Given that the root of the equation is «, and that a is small,

(b) use the small angle approximation for cosx to estimate the value of a to 3 decimal places.

3

X)) Yo=© ) U'zem S O’(Zén dim

O:%”/Z LA au(;)m
u

2x = -l x u—l/ =  has
2 mo,realrc)% dmc:)

DC:'I/LI_ @
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i Question 2 continued
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(Total for Question 2 is 5 marks)
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W 5x% +10x
3. y= > x # -1
/ (x+1)

~ where 4 and n are constants to be found.

(a) Show that & =
dx

(b) Hence deduce the range of values for x for which b <0
o) dx (1)

Y1)z Sx® 10 PI)=10% 410
q(x) - (K1) * 3’(%)-;7(1”) @

2(1)(+1)
= 2(x+1)
dy/, = (0 0 ()% - 2% 102) (2A 1)

¢2ba 0,
7Y
(102 410) (X41) -2 (S % 1 O2) @

1\

(X +1)=

Gk e e 10- 55
(X+1)3

- 1o A=10

N= 3

(px1)>
(@)

6 ©
— N0 R
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Question 3 continued

2 <O essendi

- MeNS  eqain
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(x41)

' Possabive

) + :-I-)Q
Y olefainato- +
Must be

above + i O

w

(X41)°< O

(+

TRl
4

R

(->°

lXﬁlhﬁ

&:ben%¥5M¢

X+1 < O

X <=1 <D
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(Total for Question 3 is 5 marks)
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4. (a) Find the first three terms, in ascending powers of x, of the binomial expansion of
- o1 Y
-1 L a'sL gkt
( L" - %) t e V4 —x Q\ l/
<) |

giving each coefficient in its simplest form.

Q)

3 _ —
| - T

The expansion can be used to find an approximation to V2

Possible values of x that could be substituted into this expansion are:

e x =-14 because 1 = S

e x =2 because =
1

e x=—— because ——=—=
2

(b) Without evaluating your expansion,

(i) state, giving a reason, which of the three values of x should not be used

M

(i1) state, giving a reason, which of the three values of x would lead to the most
accurate approximation to V2

¢y

= 7 (1-2)% ()
| Nt E)E) ()2
(-2 =31 @ (F ]@
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Question 4 continued [ S\\W@b Xm Mla w

-1gl= 14 Ju>4 chah Meane A =-)u should
nob &2 used AL As-Iu S ot vam:l(fbr
P AREY

b) w) Z= =L because S vs clesest bo 2ero ()

(Total for Question 4 is 6 marks)
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5. f(x)=2x*+4x+9 xeR

(a) Write f(x) in the form a(x + b)* + ¢, where a, b and ¢ are integers to be found.

3)
(b) Sketch the curve with equation y = f(x) showing any points of intersection with the
coordinate axes and the coordinates of any turning point.
3)
(c) (1) Describe fully the transformation that maps the curve with equation y = f(x) onto
the curve with equation y = g(x) where
gx)=2(x—-2)*+4x-3 xeR
(i) Find the range of the function
h(x) = 7 241 5 xelR
X" +4ax + (4)

00 g = Tats o+ 9 b) D:’Z(x+|)2+?

=25 x)+9 () Y inbecepb when =0

= 2[(1*-1]49 @ 3122(*0;1)"*?

= 2Ux+1)%-2+ 9 =g j inkecepb (09)
= 2010472 () X obecePl wher Y=o
O=2(x+1)%+ 7

y,0 2xn+1)t -7
\)/ (1) 2= =7 o tusnve daesh
(0,9)(® 2 beceph x Gxs
(no read @ots)
LD O
> Twrw()f] Ponk
‘a= (x-a)*+ b Ewrwﬁ poik (0, b)
5:2(x--.)"+ 7 2. lwmig pont (,7)
0 0 0
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Question 5 continued

<) © J00- e txs 9 3(%-0«3 brcnsla,&mba
3(%)»’2(1-2) Lihx -3 veclko (%)

X(% )= ?(9(:2) «W(x-2)+9
'z(xz) sUx-8+ 9 j(?c)#o Grdﬁla»écm'cg
= 2(N-2)° 4+ b+ | W(g)

3(% 2)-b-= 2(%z) () +4-U
= 2x-2)" 447( S+94-4
= 2(x- 2) +bax -3

()= (x-2)-4 Thebmsgmmx,m
% X Ra b 33(9@ ko 3%236 a @
tronglsikoon ba vecb:r (Qq)
o
)& Y hix)= 21
222 +b+ 9
(0,9
M volue = 21
(LD S<=m ‘SSW’) R 8“’)
X
Lf(ao) —= 0
hx)— O

O<hin)¢z ()
Maxmum h(w)

when () o= ok ¢
s = o
.3 0
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6. (a) Solve, for —180° < 6 < 180°, the equation
5sin26 = 9tand
giving your answers, where necessary, to one decimal place.

[Solutions based entirely on graphical or numerical methods are not acceptable.]

(6)
(b) Deduce the smallest positive solution to the equation

5sin(2x — 50°) = 9tan (x — 25°)
(2)

v) Ssin2e- e

Jusmﬁ W20 = 25O o0
S(2snews0): Uo sn®

/ usuy b8 = rce
10 SiP s = qSu’J@O

05N ws® = 9 Sing

10 3B %0 - 4508 = O
SNe (1I0ws*®-9) =Q

SP-0 OR 10w -a-00 ﬁorn(o.lw(aalw\v\

l 10 5%©= 9

- <n Z0- q -l ] °
®=§(O) cos@l_o aws(ro) 184
\ - - :
fom st T 7 0= @5 (F)- 1616
qo0°

-180° /r b’\Clo"
oﬂ

14
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Question 6 continued
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7. In a simple model, the value, £V, of a car depends on its age, 7, in years.

The following information is available for car 4
=0
e its value when new is £20000 2
e its value after one year is £16000 ~ { =

(a) Use an exponential model to form, for car 4, a possible equation linking V" with ¢.

“4)
The value of car 4 is monitored over a 10-year period.
Its value after 10 years is £2000
(b) Evaluate the reliability of your model in light of this information.

(2)

The following information is available for car B

e it has the same value, when new, as car 4
e its value depreciates more slowly than that of car 4

(c) Explain how you would adapt the equation found in (a) so that it could be used to

model the value of car B.
- \/:Aem‘ /gjgalwpmm&alﬂbdd a)

hen Cor s ;70000 = Ag® @
20000 = A(1) + A=20000

V = 20000¢e"”

(1)
ker oe yeer 1 16000 = 'ZOOOOQ
S J \eooo 200002 (1)

s
[
he® ==
R - Ln—g— = -0.223
-0.223 4

\'= 20000€ ()
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Question 7 continued

o) \/=QOOOOQ'O'223“O)
-£21so @)

Ackuok wlue § Cor A afber 10 yeos s A2000
dUSO ¥ R2000 & Ouw moded & reloble (1)

) V- A
N'A wlue wid be bhe
&umLSbrca-rssm
Gr Atnd R hawe aMme
\Value when /\ We hoae 6o adu& ‘R volue

Make *-0.223" (the'R value) loss nefpkine O
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8. O = X (A2) (A~ ¥)
J [}

y A
A=0 A+2:0 A-4=0
A=-2 =4
A0
B b .
\ 0 R2 K X
x:v’z %5“
- 2
:j- 2(L"-2x -B)
3
= '27(.,2' oY 4
Figure 2

Figure 2 shows a sketch of part of the curve with equation y = x(x + 2)(x — 4).

The region R, shown shaded in Figure 2 is bounded by the curve and the negative x-axis.

2
(a) Show that the exact area of R is ?0

“4)
The region R, also shown shaded in Figure 2 is bounded by the curve, the positive x-axis
and the line with equation x = b, where b is a positive constant and 0 < b < 4
Given that the area of R, is equal to the area of R,
(b) verify that b satisfies the equation
(b+2) (36> —20b+20)=0
“4)

The roots of the equation 35° — 205 + 20 = 0 are 1.225 and 5.442 to 3 decimal places.
The value of b is therefore 1.225 to 3 decimal places.

(c) Explain, with the aid of a diagram, the significance of the root 5.442
2)
O (

o
3%3' A R ) N U0 EA T

* d -] O
= [Upx*- x> ux®| K
|, 20

= 3 08 neeoled
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Question 8 continued
b

b) ) ' oA
Jx3—7x’-8x oz = ‘3—29 mmwém&mg)m oS bl
0

b
[’/u"“’ 7 x- ux’] ? 22
(0)

- 20
3

()~ %(b) 4 (b)2- O -

(b+2) (362 206+20) <O b 263 yp2- -@@

(b b+ 4)(32-20b+20)°0 | w 3 3 )xz

3" - 206> 20b%+12b3- &b %u 5

t +12b%-80b + RO = Q)| 30 -2b™-12b°=-20
&0b &0 0| > "

3b'-Bb>-UBb %+ O = O Y &b - UBb - - B0
\ oquokion & 83 U 8070 ()
N equetion A
Se equakion A ond B e ydantocad we howe verfed
4 equalxm (b+2)*(3b% 2001 20)=0

Mb%ﬁfiﬂ&w 2
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Question 8 continued

y A C) b
-20
dx = =
A:lzes J 3 3
R, b/ o
ON g R T 1.22S
: X°S. 442 -«
o
S 20
J y o =
o
Figure 2
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9. Given that @ > b > 0 and that a and b satisfy the equation
loga — logb = log(a — b)

(a) show that

3)

(b) Write down the full restriction on the value of b, explaining the reason for this restriction.

(2)

o) loga—logbslojla b) u&yg (a‘ja loab ( )@

bﬁ(%) IOS(O- b)

2-0-b
b

b) &= b*
Qxb b- |

_ 2
o=ab-b )*b @)
B*O\ ng o

b= ab -0
b*=aG(b - |)2

0= b
b =1

b-1)
03 needed

0,

b-\#£O ' b#]

Sne 620 we hnow
2//\10%5#’-8556&/‘&
5 70 ()

\ b\mq,%be

because + _

O b-120
s b> |
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e Pogf by exbamston
10. (i) Prove that for all n € N, n*> + 2 is not divisible by 4
Vi2,3,b ... )

(i1) “Given x € R, the value of \3x — 28\ is greater than or equal to the value of (x — 9).”
State, giving a reason, if the above statement is always true, sometimes true or never true.

@)
V) For wWhen n s even
lk N -2k

N%2-(2%)° 2
< Y%s 2 SO when N & enen N2 asnobowwble
"Wb‘ju b Sie &'s Z moe thon O Mulkgple
L0d 2 ¢ sn’%ohm&blzig @

for hen N & add
l@()n=2kil @

N2 = (k)4 2 O when n s odd NHZ & Neb olansible
AV NRY, um¢'sgmmmammhm3'
< b(lh )+ 3 L0 3 't ohm&blztg n

\ohwsdahbJu O/‘
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DONOTWRITEINTHISAREA DO NOT WRITE IN THIS AREA

 DONDT WRITEINTHIS AREA

e Pogf by exaumsian
(i) Prove that for all n € N, n?> + 2 is not divisible by 4
y i’
"3.5)E -~ ‘;zlg)bl'

4)

(i1) “Given x € R, the value of |3x - 28| is greater than or equal to the value of (x — 9).”
State, giving a reason, if the above statement is always true, sometimes true or never true.

) |3x-28l2>2-9

‘j,:l'Sx—zsl\ Y | %28

Y

31:28
x- 28

3
0, Y= -9
y
‘ 0- 29
o The slatemnt o Somekunes 29
bue, since there oe poms here
| 32c-281<¢- A 0nd pons 132-28122-9

d

(2)

O=3x-28

\mhm
/ o

oL Untecepts

(Total for Question 10 is 6 marks)
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11. A competitor is running a 20 kilometre race.

She runs each of the first 4 kilometres at a steady pace of 6 minutes per kilometre.
After the first 4 kilometres, she begins to slow down.

In order to estimate her finishing time, the time that she will take to complete each subsequent
kilometre is modelled to be 5% greater than the time that she took to complete the previous
kilometre.

Using the model,

(a) show that her time to run the first 6 kilometres is estimated to be 36 minutes 55 seconds,

(2)

(b) show that her estimated time, in minutes, to run the rth kilometre, for 5 < r < 20, 1s

4

6 x 1.05°
(0]

(c) estimate the total time, in minutes and seconds, that she will take to complete the race.

4)
<L 6hm=(6xu) + (£x1.05)+ (6x1.05%)
00 Tolad kme R frsb 6 fom = || \m(é )@

MWk
= 36.91S mnunkes = 36 monukes SS Secods @)

(60x04is=54.9%SS)
b) s%km: £x1.0s' 2’

é*’”hm GHOS
;l m: Ex1.0S* F-3:4 @

..UQWMWédne r¥km gs 6x).
jb’ &:omWSe:wS

20 .  a-6.3
C) bobod bome = 24 muwkes + ?éxl.OS r=1,.08

s @ n-1¢
0] \LULW) @ Sa=Qll-c")
= 20 mawdes + €.3(1-1.05'¢) |-
1 - 1.0S
= 173.0u2 Mmnutes = 173 minbes 3 Secends ()
(60 x 00u2) &
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12.

f(x)=10e "> sinx, x>0

(a) Show that the x coordinates of the turning points of the curve with equation y = f(x)
satisfy the equation tanx = 4

“4)
y A
0 x
Figure 3
Figure 3 shows a sketch of part of the curve with equation y = f(x).
(b) Sketch the graph of H against ¢ where f f (% )
H() = |10e > sint| >0
showing the long-term behaviour of this curve.
(2)

The function H(?) is used to model the height, in metres, of a ball above the ground
t seconds after it has been kicked.

Using this model, find

(c) the maximum height of the ball above the ground between the first and second bounce.

(&)

(d) Explain why this model should not be used to predict the time of each bounce.
1)
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Question 12 continued

) - 10e" " s
X’(?L)- -0.25(10€°°%") S + cosx (10e°F)
- -2.550mxe”° s | 0ws2e 0P (%)

O = -2.55n2e” "+ 10wsze > "

= 2% (-1.Ssw + 10 @sr
I ) 9,

@20 or -2S3ms10wsa=O
\ |OCBa = 2.S SNz
(Ejeck because 10 _ s ()
no solution TS wsx | Sk
\ (07,5,
~— tox - b s neecld
o) 1,
0, omech shape
O decreasiny heajrts
: AVAVAV-N
t
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Question 12 continued

&
"1 terz-4 {orx
Mo b
: 8 ST (zum ,' ,‘ :
< | i/
H(tt9)= 10€ > “ s sin (w47)] < 3.18m // / :
@ /
d)

The kumes bobwmn each bonce ghodd ngb bhe e
when bhe hegints  €0th one = qpling D,

(Total for Question 12 is 10 marks)
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13. The curve C with equation

y = p—3x xeRx#-3,x#2

2x —g)(x+3)

. 1 .
where p and ¢ are constants, passes through the point (3, —) and has two vertical asymptotes
with equations x =2 and x = -3 2

(a) (1) Explain why you can deduce that g = 4

(i1)) Show that p =15
3)

VA

—_— >
) 3 x=-S X

Figure 4

Figure 4 shows a sketch of part of the curve C. The region R, shown shaded in Figure 4,
is bounded by the curve C, the x-axis and the line with equation x = 3

(b) Show that the exact value of the area of R is aln2 + bIn3, where a and b are rational
constants to be found.

®

139) Ver&w,asﬁméubesm (72-9)(x+3)=0
/ v
Mm-g=0 X+3=0
- Z=-3
@ q)z:z
AARC]
. q=4 08 needed
P -3 P q

Q) 5:(21-1-})(%37 4

y-P-30 _p-a / ¢-

(Wrw)(33) 2 NS
et 0 (3%)
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Question 13 continued

b) b IS - 3¢
(In- W) (A+3)
O=15 ~ I
(-$(xv3) | 13 3= A + 8
(-3 (Ty)  (AD)
O-=15-3
3= 15 1S-20e: A(A+3)+ B(2x-1)
xX=3 w-1:0 2 -2
lek x--2 W= B(-10) |(gh 2-2 9-SA
L B:-2.u " A% 18
IS-32 % g

- &t 0
(T-u)(A+3) - )@( +3) J%T)dx ]3]+ c

s S
13 2.u Sy
) o )o‘/x [0.%1& 4| ?.u(nlauz.n]
3 J \ 3
() = - ()= 243
ng 7 §’(x)z 1 o)

L%. 04 b - 2.4
|

2

© 0.9012)-11-2401:31-[0.40|2S)-4|-241n]3:3/]
= 0.9n|61-241n131-0.4n 1 21+2. 46

3.3Wl6l-2.4n18|-D.9(h |2
3.3(131: i) -2.4h|23) - p.ahi2|
3.3I31«330izl- 22012 -0.9 2]
3.3h131-4.3Wiz1 ()

a n n

(Total for Question 13 is 11 marks)
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14. The curve C, in the standard Cartesian plane, is defined by the equation
. -7 T
x=4sin2 — < y< —
R G
The curve C passes through the origin O

(a) Find the value of % at the origin.

(2)
(b) (i) Use the small angle approximation for sin2y to find an equation linking x and y
for points close to the origin.
(i1) Explain the relationship between the answers to (a) and (b)(i).
(2)

(c) Show that, for all points (x, y) lying on C,

dy 1

dx ) avb - x° W
i

where a and b are constants to be found.

o0 - qgmzﬂ bi) Shx X

dx . u(zwﬂ‘j) 0 SMZJ ¥ 23 0
SoXe usm23 )

Y
i‘ﬁ:‘— x ¥ 4(133 &%n‘{gzztj

dx 8«529 )Ab owgn (6,0) x 83

bw)\bbw A Q) s
i \Yanduﬂbu)O

ame (Q vadie
)
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Q) My St
dx = Zws . Sin"ly 4 US"2y < |
x- “S""Zﬁ
o - lesdn"zg )
v :" 4
x = lé(l—coszlsj)) lAﬁdOS %% w Z:) Y,
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